P0135

The effect of ceftazidime/avibactam/aztreonam on clinical multidrug-resistant *P. aeruginosa* isolates from Germany

E. Wohlfarth ^{1*}, M. Kresken ¹, Jessica Eisfeld ², Niels Pfennigwerth ², Sören Gatermann ²

¹Antiinfectives Intelligence GmbH - Cologne (Germany)

²National Reference Centre for Gram-Negative Bacteria – Bochum (Germany)

Third party annotation: Study Group 'Antimicrobial Resistance' of the Paul-Ehrlich-Society for Infection Therapy

*Presenting author Esther Wohlfarth, PhD

Copenhagen, Denma

Background

- The combination of ceftazidime (CTZ) and avibactam (AVI) exhibits potent activity against multi-drug resistant (MDR) Gram-negative bacteria.¹
- In *Pseudomonas aeruginosa* this activity can be reduced due to altered membrane permeability, efflux pump mutations and presence of metallo-β-lactamases (MBLs).
- The combination of aztreonam (AZT) and AVI is suggested to be an effective alternative in the treatment of infections caused by MBL-producing *P. aeruginosa.*²
- The purpose of this study was to evaluate the effect of AVI in combination with CTZ and/or AZT in MDR *P. aeruginosa* isolates from hospitalized patients in Germany.

• Thirty-eight clinical *P. aeruginosa* isolates showing combined resistance to CTZ, imipenem and meropenem were selected from the strain collections of two multicentre surveillance studies conducted in 2018 and 2019/20.

Methods

- Carbapenemase genes were detected by PCR. Positive isolates were further investigated by whole-genome-sequencing at the German National Reference Centre for Gram-Negative Bacteria in Bochum.
- Susceptibility was tested by broth microdilution (CTZ \pm AVI and AZT \pm AVI) and agar dilution (ceftazidime/avibactam (CTV), AZT/AVI and CTV combined with AZT 8 or 16 mg/L).^{3,4,5}
- Three representative MBL-producing isolates were further analysed using timekill methodology. Drug concentrations applied were those corresponding to the area under the curve serum levels published by Montero et al.⁶: AZT 1,050 μ g·h/mL corresponding to a dose of 2 g every 8 h, CTZ 800 μ g·h/mL corresponding to a dose of 2 g every 8 h and AVI 147 μ g·h /mL corresponding to a dose of 0.5 g every 8 h.

Results

- MIC distributions are shown in the Table.
- MIC_{50/90} values for CTZ and AZT were each 32/64 mg/L. In combination with AVI the MIC_{50/90}s were reduced to 8/64 mg/L (CTZ) and 16/32 mg/L (AZT).
- Similar MIC_{50/90} values were observed for the double combinations using agar dilution. In contrast, the triple combinations showed much lower MIC_{50/90} s of 0.125/4 mg/L (AZT 8 mg/L) and 0.06/0.06 mg/L (AZT 16 mg/L).

autorea (acartization		1	MIC (mg/L)													0/ 0	0/1	0/ D
substance / combination		0.0625	0.125	0.25	0.5	1	2	4	8	16	32	64	128	(mg/L)	(mg/L)	705	761	70R
Ceftazidime MD	n	0	0	0	0	0	0	3	2	7	9	17		32	64	-	5	33
	cum-%	0.0	0.0	0.0	0.0	0.0	0.0	7.9	13.2	31.6	55.3	100.0				-	13.2	86.8
Ceftazidime /	n	0	0	0	0	0	4	9	11	6	3	5		- 8	64	24	-	14
Avibactam (fix 4 mg/L) MD	cum-%	0.0	0.0	0.0	0.0	0.0	10.5	34.2	63.2	78.9	86.8	100.0				63.2	-	36.8
Ceftazidime /	n	0	0	0	0	2	1	9	8	9	7	2		8	32	20	-	18
Avibactam (4:1) AD	cum-%	0.0	0.0	0.0	0.0	5.3	7.9	31.6	52.6	76.3	94.7	100.0				52.6	-	47.4
Aztreonam MD	n		0	0	0	0	0	0	4	9	15	9	1	32	64	-	13	25
	cum-%		0.0	0.0	0.0	0.0	0.0	0.0	10.5	34.2	73.7	97.4	100.0			-	34.2	65.8
Aztreonam /	n	\sim	0	0	0	2	0	2	11	9	12	2	0	40	22			
Avibactam (fix 4 mg/L) MD	cum-%		0.0	0.0	0.0	5.3	5.3	10.5	39.5	63.2	94.7	100.0	100.0	10	32			
Aztreonam /	n		0	0	0	0	0	0	8	7	16	6	1	22	64			
Avibactam (4:1) AD	cum-%		0.0	0.0	0.0	0.0	0.0	0.0	21.1	39.5	81.6	97.4	100.0	32 64		no EUCAST breakpoints		
Ceftazidime / Avibactam (4:1)	n	15	4	1	5	2	7	3	0	0	0	1		0.405	4		available	
plus Aztreonam (fix 8 mg/L) AD	cum-%	39.5	50.0	52.6	65.8	71.1	89.5	97.4	97.4	97.4	97.4	100.0		0.125	4			
Ceftazidime / Avibactam (4:1)	n	36	2	0	0	0	0	0	0	0	0	0		0.0005 0.000		1		
plus Aztreonam (fix 16 mg/L) AD	cum-%	94.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		0.0625	0.0625			

Table: MIC distribution, MIC₅₀- / MIC₉₀-values and number of susceptible (S;I) and resistant strains [%]

AD: Agar dilution; MD: Microbroth dilution; MIC, minimum inhibitory concentration; n, number of isolates; cum-%, cumulative percentage. Numbers in bold include isolates with MIC > the highest concentration tested; numbers in italic include isolates with MIC < value shown.

- Eight MBL-encoding isolates were detected. The corresponding beta-lactamase (*bla*) genes were identified as *bla*_{GIM-1} (n=1), *bla*_{IMP-1} (n=1) and *bla*_{VIM-2} (n=6).
- Three VIM-2-encoding isolates (sequence types: ST-111/-233/-235) were further investigated by time-kill assay.
- When using the triple combination, a reduction of ≥ 3-log₁₀ CFU/mL was observed for each strain within 24 h (Figure).

Figure: Time-kill assays of VIM-2-encoding P. aeruginosa isolates.

References

- Zhanel GG et al. Drugs 2013; 73:159–177.
- 2. Davido B et al. Antimicrob Agents Chemother 2017; 61:e01008-17.
- 3. International Organization for Standardization. ISO 20776-1: 2019.
- Clinical and Laboratory Standards Institute. M07-A10: 2015.
 Marshall S et al. Antimicrob Agents Chemother 2017; 61: e02243-16.
- Marshan O et al. Antimicrob Agents Chemother 2017, 01: 602243 Montero MM et al. Microbiol Spect 2021; 9: e00585-21.

Funding

This project was sponsored by Pfizer Pharma GmbH.

- Conclusions
- There was no difference in the activity between CTV and AZT/AVI against MDR *P. aeruginosa* with combined resistance to ceftazidime and carbapenems.
- The combination of CTV/AZT was active against all clinical isolates and revealed a bactericidal effect after 24 h in VIM-2-producing strains of three widely distributed sequence types.