CAZ-AVI represents a valuable option for targeted treatment of infections caused by non-MBL-producing Enterobacterales and Pseudomonas aeruginosa isolates.

In vitro activity of ceftazidime-avibactam against ceftazidimenon-susceptible Gram-negative pathogens recovered from hospitalized patients from Germany, Austria and Switzerland, 2019-2020

Background

The combination of ceftazidime (CAZ) plus avibactam (AVI) possesses potent activity against Gramnegative bacteria producing different classes of β-lactamases, with exception of metallo-β-lactamases (MBL).1 This study investigates the in vitro activity of CAZ-AVI against Gram-negative bacteria recovered from patients during a multicentre surveillance study conducted in 2019/20.

Results

- CAZ-resistance was confirmed in 215 Enterobacterales and 104 P. aeruginosa isolates. Susceptibility to CAZ-AVI (MIC ≤ 8 mg/L) was observed in 98.6% of CAZ-resistant Enterobacterales and 80.8% of CAZ-resistant P. aeruginosa (Table).
- Isolates from Austria (n=27) and Switzerland (n=18) were susceptible to CAZ-AVI, with three isolates from each country showing MIC = 8 mg/L, which is close to the EUCAST breakpoint (>8 mg/L).

Table: Number and percent of ceftazidime-avibactam (CAZ-AVI)-susceptible and CAZ-AVI-resistant Enterobacterales and P. aeruginosa isolates

Group / subgroup (n, number of isolates)	CAZ-AVI-susceptible		CAZ-AVI-resistant	
	n	%	n	%
Enterobacterales				
All (n=261)	258	98.9	3	1.1
Ceftazidime-resistant Enterobacterales				
All (n=215)	212	98.6	3§	1.4
ESBL-producer (without CP) (n=92)	92	100.0	0	0.0
CP-/ESBL-producer (n=8)*	6	75.0	2	25.0
Pseudomonas aeruginosa	-	-	-	
All (n=154)	134	87.0	20	13.0
Ceftazidime-resistant P. aeruginosa			-	
All (n=104)	84	80.8	20	19.2
MBI -producer (n=5)#	0	0.0	5	100.0

CP, carbapenemase; ESBL, extended-spectrum-β-lactamase; MBL, metallo-β-lactamase. § In one CAZ-AVI-resistant *K. pneumoniae* isolate there was neither a CP nor an ESBL detected. Five *K. pneumoniae* isolates encoded either OXA-232 together with CTX-M-1 (n=3), KPC-2 in combination with CTX-M-1 (n=1) or NDM-1 together with CTX-M-1 and OXA-48. In addition, one *K. variicola* isolate encoded VIM-1 together with CTX-M-9 and two *E. coli* isolates encoded OXA-244 together with CTX-M-9. *MBL-positive *P. aeruginosa* encoded GIM-1 (n=1), IMP-1 (n=1) or VIM-2 (n=3).

- Various β-lactamase genes were detected, including CTX-M-group1/9, OXA-48-like, KPC-2, NDM-1 and VIM-1 in Enterobacterales isolates and VIM-2, IMP-1 or GIM-1 in P. aeruginosa isolates.
- Non-MBL-producing CAZ-resistant isolates revealed CAZ-AVI-susceptibility rates of 99.5% for Enterobacterales and 84.8% for P. aeruginosa.

Methods

In total, 415 Enterobacterales and Pseudomonas aeruginosa isolates were collected at 23 laboratories across Germany, Austria and Switzerland as part of the resistance study of the Paul-Ehrlich-Society. At one reference laboratory verification of species identification and antimicrobial susceptibility testing were performed; and the in vitro activity of CAZ-AVI and CAZ was determined by broth microdilution. Presence of beta-lactamase genes was investigated by PCR and/or whole genome sequencing at the Robert Koch-Institute and the National Reference Centre for multidrug-resistant Gram-negative Bacteria.

Wohlfarth E.1*, Kresken M.2, Pfeifer Y.3, Pfennigwerth N.4, Werner G.3, Gatermann S.G.4, Deuchert F.1 Study Group `Antimicrobial Resistance' of the Paul-Ehrlich-Society for Infection Therapy

¹Antiinfectives Intelligence GmbH, Cologne; ²Paul-Ehrlich-Society for Infection Therapy, Cologne, Germany; ³Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany; ⁴National Reference Centre for multidrug-resistant Gram-negative Bacteria, Bochum, Germany.

*corresponding author: esther.wohlfarth@antiinfectives-intelligence.de

