
Cefiderocol continues to show potent activity against Enterobacterales and non-fermenting clinical isolates from 2019/20.

Update on the comparative *in vitro* activity of cefiderocol and four β-lactam-β-lactamase inhibitor combinations against clinically important Gram-negative pathogens

Background

Our previous study showed potent activity of cefiderocol (CID) against clinically relevant Enterobacterales and non-fermenting isolates from 2016/17.¹ The aim of the present study was a follow up investigation of the *in vitro* activity of CID and comparator substances against isolates from 2019/20.

- One third of all isolates was randomly selected for the pretest including
 A. baumannii, n=4; *E. cloacae* complex, n=13; *E. coli*, n=43; *K. pneumoniae*, n=27;
 P. aeruginosa, n=45 and *S. maltophilia*, n=8
- Overall, the pretest confirmed correlation of both methods (category agreement (CA): 97.9%, essential agreement (EA): 89.5%, Bias: +21.6%) (Figure), with species-related differences.

Table 1: In vitro a	ctivity of	cefideroc	ol agains	t Gram-	negative	pathoge	ns study	period 2	019-20,	German	y.					
Species	n	Numbers of isolates at given MIC (mg/L)														
species	n	≤ 0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	≥ 128		
Random sample o	f isolates	(panel I, r	n=199)													
E. coli	50	1	5	16	16	10	2									
K. pneumoniae	33	2	7	11	10	3										
E. cloacae complex	12			1	4	7										
P. aeruginosa	66	6	8	25	18	6	3									
A. baumannii	6		1	3	2											
S. maltophilia	32		3	18	8	2	1									
Subtotal	199	9	24	74	58	28	6									
Sample of resistar	nt isolates	(panel II,	n=202)	1												
E. coli	65			5	23	19	13	2	2	1						
K. pneumoniae	44		3	2	13	13	9	3	1							
E. cloacae complex	19		1	1	3	8	4	2								
P. aeruginosa	66		3	17	26	12	6	1	1							
A. baumannii	8			1	4		1							2		
Subtotal	202		7	25	69	52	33	8	4	1				2		
Total	401	9	31	99	127	80	39	8	4	1				2		
¹ Panel II comprise The vertical solid I												ıg/L).				

- CID at ≤2 mg/L inhibited 100% of panel I isolates and 96.5% of panel II isolates (Table 1).
- Susceptibility rates to CID were higher than those to the BL/BLI-combinations in *P. aeruginosa*, but comparable to C/T, CZA and IMR in Enterobacterales (Table 2). In *A. baumannii* and *S. maltophilia* CID revealed lower MIC₅₀ and/or MIC₉₀ values than the comparators.
- Overall, CID at ≤2 mg/L inhibited 96.3% ESBL-producers, 84.2% carbapenemase-producers, and 95.8% colistin-resistant isolates (Table 3).

Table 2: <i>In vitra</i> isolates (n=401		cefiderocol	and four new	er BL/BLI-co	mbinations agains	t Gram-neg	ative patho	gens stratified	by panel of
Random sampl	,	(nanal I n=	-100)		Sample of resig	stant isolate	(nonal II	n=202) 1	
		a ,	Number (%)	of indates			a ,	,) of isolates
Antibacterial agent	MIC-50 (mg/L)	MIC-90 (mg/L)	S	P	Antibacterial agent	MIC-50 (mg/L)	MIC-90 (mg/L)	S	p p
Enterobacteral		(3	K	Enterobactera	(0)	(3	K
CID	0.25	0.5	95 (100.0)	0 (0.0)	CID	0.5	1	124 (96.9)	4 (3.1)
C/T	≤ 0.25	0.5	93 (97.9)	2 (2.1)	C/T	0.5	8	109 (85.2)	19 (14.8)
CZA	≤ 0.25	0.5	95 (100.0)	0 (0.0)	CZA	≤ 0.25	1	127 (99.2)	1 (0.8)
IMR	0.12	0.25	95 (100.0)	0 (0.0)	IMR	0.12	0.25	124 (96.9)	4 (3.1)
MEV P. aeruginosa (x	≤ 0.06	≤ 0.06	95 (100.0)	0 (0.0)	MEV P. aeruginosa (≤ 0.06	≤ 0.06	124 (96.9)	4 (3.1)
P. aeruginosa (i CID	0.12	0.25	66 (100.0)	0 (0.0)	P. aeruginosa (CID	0.25	1	65 (98.5)	1(1.5)
C/T	1	4	63 (95.5)	3 (4.5)	C/T	1	≥16	53 (80.3)	13 (19.7)
CZA	2	8	64 (97.0)	2 (3.0)	CZA	4	≥ 32	45 (68.2)	21 (31.8)
IMR	0.5	2	64 (97.0)	2 (3.0)	IMR	2	≥ 16	51 (77.3)	15 (22.7)
MEV	0.5	4	63 (95.5)	3 (4.5)	MEV	8	≥ 32	39 (59.1)	27 (40.9)
A. baumannii (1 CID		0.25			A. baumannii (CID	(n=8) 0.25	≥256		
C/T	0.12	> 16			C/T	0.25 ≥ 16	≥ 250 > 16		
CZA	4	> 32	No EUCAST	breakpoints	CZA	≥ 32	≥ 32	No EUCAS	T breakpoints
IMR	0.25	≥ 16			IMR	≥ 16	≥ 16		
MEV	0.25	8			MEV	≥ 32	≥ 32		
S. maltophilia (1 See footnote				
CID C/T	0.12	0.25 > 16			² Enterobacter			chia coli (n=50)),
C/I CZA	≥ 16 16	≥ 16 ≥ 32	No EUCAST	braskpointe	Klebsiella pnei ³ Enterobacter			chia coli (n=64	0
IMR	> 16	≥ 32 ≥ 16	NUEUCASI	oreaspoints	Klebsiella pnei			enta con (n=0.	<i>,</i> ,
MEV	≥ 32	≥ 32							
Abbreviations: 5	S, susceptibl	e; R, resistar	nt; CID, cefider	ocol; C/T, cefi	olozane-tazobactar	n; CZA, ceft	azidime-avi	bactam; IMR,	imipenem-
relebactam; ME	V, meropene	m-vaborbac	tam.						

Methods

Enterobacterales and non-fermenting isolates (n=401) were collected at 22 laboratories in Germany between October 2019 and March 2020. A random sample of respiratory tract and blood isolates (panel I; n=199) and more challenging isolates with certain resistance mechanisms were included (panel II; n=202). MICs were determined by broth microdilution using the ComASP kit from Liofilchem. To confirm reliability of the test kit, a pretest was performed in advance with a subset of isolates (n=140) comparing test device and EUCAST reference method (iron-depleted CAMHB). Resistance genes were confirmed by PCR/Sanger sequencing.^{2,3}

Wohlfarth E.*1, Deuchert F.1, Gatermann S.G.², Higgins P.G.³, Pfeifer Y.⁴, Pfennigwerth N.², Seifert H.³, Werner G.⁴ Study Group `Antimicrobial Resistance' of the Paul-Ehrlich-Society for Infection Therapy

¹Antiinfectives Intelligence GmbH, Cologne (Germany); ²German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Bochum (Germany); ³Institute for Medical Microbiology, Immunology and Hygiene, Cologne (Germany); ⁴Robert Koch-Institute, Wernigerode (Germany) *corresponding author: <u>esther.wohlfarth@antiinfectives-intelligence.de</u>

References
1. Wohlfarth E et al., Antibiotics 2023; doi: 10.3390/antibiotics12050864
2.Higgins et al., Antimicrob Agents Chemother 2013, doi: 10.1128/AAC.02413-12
3. Schuster CF et al., J Antimicrob Chemother 2021; https://doi.org/10.1093/jac/dkab407n

Funding & Disclosures This project was sponsored by Shionogi GmbH. EW is a general partne and CEO of Antiinfectives Intelligence GmbH, which provides research services for pharmaceutical companies.

